Investigation of the microheterogeneity and aglycone specificity-conferring residues of black cherry prunasin hydrolases.

نویسندگان

  • Jiming Zhou
  • Stefanie Hartmann
  • Brianne K Shepherd
  • Jonathan E Poulton
چکیده

In black cherry (Prunus serotina Ehrh.) seed homogenates, (R)-amygdalin is degraded to HCN, benzaldehyde, and glucose by the sequential action of amygdalin hydrolase (AH), prunasin hydrolase (PH), and mandelonitrile lyase. Leaves are also highly cyanogenic because they possess (R)-prunasin, PH, and mandelonitrile lyase. Taking both enzymological and molecular approaches, we demonstrate here that black cherry PH is encoded by a putative multigene family of at least five members. Their respective cDNAs (designated Ph1, Ph2, Ph3, Ph4, and Ph5) predict isoforms that share 49% to 92% amino acid identity with members of glycoside hydrolase family 1, including their catalytic asparagine-glutamate-proline and isoleucine-threonine-glutamate-asparagine-glycine motifs. Furthermore, consistent with the vacuolar/protein body location and glycoprotein character of these hydrolases, their open reading frames predict N-terminal signal sequences and multiple potential N-glycosylation sites. Genomic sequences corresponding to the open reading frames of these PHs and of the previously isolated AH1 isoform are interrupted at identical positions by 12 introns. Earlier studies established that native AH and PH display strict specificities toward their respective glucosidic substrates. Such behavior was also shown by recombinant AH1, PH2, and PH4 proteins after expression in Pichia pastoris. Three amino acid moieties that may play a role in conferring such aglycone specificities were predicted by structural modeling and comparative sequence analysis and tested by introducing single and multiple mutations into isoform AH1 by site-directed mutagenesis. The double mutant AH ID (Y200I and G394D) hydrolyzed prunasin at approximately 150% of the rate of amygdalin hydrolysis, whereas the other mutations failed to engender PH activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prunasin hydrolases during fruit development in sweet and bitter almonds.

Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be...

متن کامل

Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides.

The biosynthesis of the cyanogenic glucosides, linamarin and prunasin, was investigated in linen-flax, peach and cherry-laurel shoots. It was shown that related 2-oximino acids, aldoximes, nitriles and 2-hydroxynitriles were generally good precursors of the aglycone moiety. Studies with double-labelled compounds confirmed the retention of the oximino nitrogen atom from 2-oximinoisovaleric acid ...

متن کامل

Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering

Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy re...

متن کامل

Isolation and Identification of Functional Components in Seed of Cherry Laurel (Laurocerasus officinalis Roem.) and Investigation of Their Antioxidant Capacity

In generally, bioactive compounds are named functional compounds. There is trend to investigate of isolation, identification and biological activities of functional compounds from natural sourcs in recent years. The aim of this work is to investigate functional compounds analysis and their antioxidant capacity of cherry laurel seed. In this work some functional compounds were isolated by chroma...

متن کامل

Phytotoxicity of black cumin (Nigella sativa), dragonhead (Dracocephalum moldavica), dill (Anethum graveolens), and soybean (Glycin max) residues on emergence and establishment of wheat

Allelopathic effects of plant residues is an important research avenue regarding optimization of rotation systems in agronomy. The aim of this study was to investigate the allelopathic effects of four plant residues, namely, black cumin, dragonhead, dill, and soybean on the germination and growth of wheat (Triticum aestivum) in different cropping systems. Results showed that applicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 129 3  شماره 

صفحات  -

تاریخ انتشار 2002